
Block Implicit One-Step Methods* 

By L. F. Shampine and H. A. Watts 

Abstract. A class of one-step methods which obtain a block of r new values at each step are 
studied. The asymptotic behavior of both implicit and predictor-corrector procedures is 
examined. 

1. Introduction. We shall consider a class of implicit one-step methods for 
solving ordinary differential equations which generalize the trapezoidal rule. The 
idea is to determine a block of r new values at each stage, the trapezoidal rule being 
a case with r = 1. 

Implicit one-step methods have been studied by Stoller and Morrison [1], 
Ceschino and Kuntzmann [2] and Butcher [3]. For linear problems these methods 
are quite useful but with the exception of the trapezoidal rule they have not found 
favor for nonlinear problems because of the relatively great amount of work in- 
volved in advancing one step. Rosser [4] has suggested obtaining a block of new 
values simultaneously which makes the implicit methods more competitive. He 
discusses in detail a procedure which calculates four new values at each stage. In 
addition to his references to earlier work let us note the procedure of Clippinger and 
Dimsdale [5]-formula (3) cf. Section 2 below-which obtains two new values at 
each stage. 

The methods we study can be described theoretically as block one-step methods. 
This situation prevails in practice for indefinite integrals and linear problems and 
also for general problems when we iterate to a fixed accuracy. In Section 2 we show 
convergence of these methods and study stability for a particular method. As 
Rosser indicates, one always expects good stability properties and indeed our 
example is a fourth order procedure which is A-stable. 

For theoretical purposes the trapezoidal rule can be conveniently regarded as a 
one-step method but its practicality depends on computing with it as a predictor- 
corrector procedure. This is what we shall do in the general case. In Section 3 we 
shall show that a suitable predictor-corrector approach leads to the same asymptotic 
behavior as iterating to completion. Again we discuss the stability of an example. 

Some comparative numerical examples are presented in Section 4. 

2. Implicit Methods. We wish to approximate the solution of 

(1) u'(x) = f(x, u(x)), u(a) = s 

on the interval [a, b]. Supposing f is continuous and satisfies 

(2) I f(x, y) - f(x, z) I < LIy - zI 
on [a, b] X (- oo, oc) guarantees the existence of a unique solution u(x) E C'[a, b]. 
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Rather than make specific differentiability assumptions, we shall assume u has 
continuous derivatives on [a, b] of any order needed. 

For h E (0, ho] let Xk = a + kh. A sequence Yk which approximates U(Xk) Uk 
below) is generated as follows. Let yo = s. An r-block method generates r additional 
terms simultaneously. After obtaining y, for n = mr the values Yn+,l . * Yn+r are 
to satisfy formulas of the form 

r r 
Eaijyn+j = eiyn+hdifn+h bijfn+j, i= 12 **r. 
j=l j=j 

Here the aij e , d i b j are constants and fn+j denotes f(xn+j, Yn+j). 
For example, Clippinger and Dimsdale use 

1 1 h h 
Yn+ - 2 Yn+2 = Yn + 

h 
fn - y fn+ 2 

(3)22 
4 4 

Yn+2 = Yn + f fn + 
4 

fn+' + 
h 

fn+2 . 

Using vector notation and the matrices A = (aij), B = (b j), column vectors 
e = (el, . * * er)., d = (di, *.. I dr)T, and ym = (Yn+i *1** Yn+r)T, F(ym) = (fn+l * .* X 

fn+r)T, this is 

Aym = hBF(ym) + eyn + hdfn. 

For the practical use of such formulas we want to multiply through by A-' which we 
suppose exists. Thus we may suppose A = I and work with 

(4) Ym = hBF(ym) + eyn + hdfn. 

In this form the formulas (3) become 

(2/3 -1/12) e 1=Q ), d=(5 12). 

Since any reasonable method will integrate f 0 correctly we shall always re- 
quire e = (1, 1, .. , 1)T in (4). 

To see when ym is well defined by (4) let us consider the iterative procedure 
which starts with an arbitrary initial guess ym(?) and defines the sequence of iterates 
ym (k) by 

ym(k+l) = hBF (ym(k)) + eyn + hdf n 

It is convenient to use the maximum norm 

flymll = max | n+i| 

to discuss convergence of this process. 
In this norm F satisfies a Lipschitz condition since each component does: 

IF(w)-F(z)jj < L11w-zj. 

Obviously 

Ilm(k+2) _ ym(k+l) | < hL|B| 1Y(km 
) - ym(k) 
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If we require 

(6) hoLIjBfj < 1, 

then a contraction mapping is present, the iterative procedure converges, and ym is 
well defined as the unique solution of (4). 

For the formula (5), jIBIj = 5/3 and (6) is hoL < 0.6. This is rather more re- 
strictive than is desirable though Rosser obtains satisfactory results with a formula 
requiring a more stringent condition. Intuitively one expects convergence to be 
slower for the component Yn+2 than for yn.+. The sufficient condition can be relaxed 
by using a weighted L2 norm. For d > 0 let D = diag { 1, d I and use the new norm 

IIYmjl = IlDyml 12 . 
A little computation shows the condition (6) becomes hoLlIDBD-'112 < 1 and that 
it is best to use d = 1/4 which leads to the improved requirement hoL < 1.27. 

In this section we are thinking of solving the implicit equations exactly or, like 
Rosser, iterating until they are resolved to a fixed accuracy. The equations are 
explicit in the case of indefinite integrals. In view of the remarkable stability we 
shall establish and the self-starting nature of the methods, they furnish a very 
effective scheme for such problems in comparison with the general scheme studied 
by Krylov [6]. Much the same can be said about linear problems when we solve the 
equation (5), which is now linear, exactly. 

2.1. Convergence. For convenience we shall prove convergence in the maximum 
norm and accordingly suppose (6) holds in this norm. The discretization error gem is 
defined by 

(7) Urn = hBF(um) + eun + hdu'(xn) + em 

which is to hold for any smooth function u(x), in particular a solution of (1) when 
u'(x) = f(x, u(x)). For example the formula (5) leads to 

( h ) - 9 (5n+2))v 

This is the most accurate formula possible of the form (4) with r = 2. Similarly the 
trapezoidal rule is the most accurate with r = 1. 

It happens that advantage can be taken of formulas which are more accurate 
at the end of the block than in the middle as exemplified above. We shall prove (5) 
has global convergence like 0(h4) instead of the 0(h3) one might expect. Accordingly 
we suppose that there are yi, Y21 k such that for all n = mr 

(8) |finEm < yihk, IEnIE+rl < 2hk+l 

The procedure can be regarded as an implicit one-step method with step size rh 
for calculating yn, Yn+r, *. From (4) 

Yn+r = Yn + rh[ drf(yn) + 1-E br1f(,+j) r ~~r brifniJ 

= Yn + rhcb(xn Yn; rh) . 

This is the same sort of procedure as used by Butcher [3], the distinction being that 
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our intermediate computations yn+i, * * , yn+r-i are also used to represent the solu- 
tion of the differential equation and not thrown away. Convergence of this one-step 
procedure is assured by Theorem 2.2 of Henrici [10], the only hypothesis not being 
obvious is the Lipschitz continuity of the second variable of the increment function. 
To see this we must first observe ym depends Lipschitz continuously on yn. For if 

ym* = hBF(ym*) + eyn* + hdf(yn*), 

then using (4) 

IlYm - ym*11 _ hLIJBIJI lYm - ym*l + (1 + hLjjdjj) Yn - Yn*I 

hence 

1yi - Ym*11 -<S I n - Yn 

for suitable 2 and all h less than the ho of (6). The same argument shows 

(9) 11YM - UM11 _ I yn - UnI + 'Y3h 

Now 

'(x,,yY; rh) - b(x, yn*; rh) I ?yn - Yn*j + BIj IIYml- ym*fl] 
r 

-< *Yn - Yn - (jjdl + ?flBlI)]. 

We conclude from Henrici's theorem that there is a Y4 such that for all Xn (= a + nh 
= a + mrh) < b, IYn - uI < -Y4hk which combined with (9) shows 

1Ymi - Umj < h k(2Y4 + 'Y3) 

this is the desired bound at all mesh-points. In particular if u(x) E C5[a, b], the 
method (5) is convergent of 0(h4). 

2.2. Stability. As with the usual one-step methods our convergence proof shows 
there is no asymptotic stability problem. There are a number of ways of studying 
stability for fixed h, see [7, p. 191]. The main idea is to explicitly obtain the approxi- 
mate solution yk when the method is applied to 

(10) u'(x) = Au(x), u(0) = s > 0 

with constant A and to require qualitative agreement with U(Xk). Commonly Yk 
is obtained from a linear difference equation with constant coefficients in which A 
and h appear only as a product X = Ah. When X < 0, u(x) decreases to zero and a 
method is said to be absolutely stable for X E (-H, 0) if then Yk also decreases to 
zero. If H is the largest number for which this is true, it is called the stability 
boundary. More generally Dahlquist [8] allows complex A and calls a method 
A-stable if Yk tends to zero for all A with Re A < 0. The notion of relative stability 
[9] is also popular but is quite inappropriate here since all these one-step methods 
are always trivially stable in this sense. 

We shall study the stability of the scheme (5). The eigenvalues of B are , = 

(3 i i VI 3)/6. If X 5 1i/M, one easily finds that applying (5) to (10) gives 
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6 -x2 

Yn+ = 6 - 6X + 2X2 Yn S(X)yn, 
3 + 3X + X2 

Yn+2 = 3 +3 ++ 2 Yn R(X) y. 

Accordingly 

Y2m = R(X)myo, Y2rn+l = S(X)R(X)myo. 

Clearly if we fix h, the discrete solution tends to zero if and only if JR(X) I < 1. A 
simple computation shows this is the case for all X with Re (X) < 0. Thus the method 
is A-stable. We remark that Dahlquist proves that of the linear multistep methods 
the trapezoidal rule is the most accurate A-stable method. 

3. Predictor-Corrector Methods. For nonlinear problems we do not ordinarily 
proceed as in Section 2. Rather than iterate until (2.4) is satisfied, we only iterate a 
fixed number of times. Since a good guess for y.. is required we use the data com- 
puted in the previous block to predict y.. via explicit formulas. Of course, in the 
first block we can predict Yk = yo + khfo and iterate to completion. This is the nor- 
mal usage for the trapezoidal rule but there seems to be very little of such usage 
for block and implicit methods. Clippinger and Dimsdale do use their formula in 
this way and Rosser also points out this possibility. To our way of thinking it is 
precisely this procedure that makes block implicit methods practical. Indeed the 
procedure we describe uses only two function evaluations per step just as do the 
usual predictor-corrector methods. We gain the advantages of self-starting and easy 
change of step-size. 

3.1. Asymptotic Behavior. We shall prove that a suitable predictor-corrector 
scheme asymptotically gives the same result as iterating to completion. Recall that 
the values obtained by iterating to completion satisfy 

(1) YM = hBF(ym) + eyn + hdf(Yn) 

and ym = um + O(hk) (um is the solution of the differential equation). In the pre- 
dictor-corrector scheme we suppose that the first block is obtained by iterating to 
completion; other starting procedures are easily handled by our analysis. 

Following the suggestion of [9] we predict new values in a block ymP, evaluate 
F(yrnP), correct to obtain ymc, evaluate F(ymc), and correct again to obtain ymcc. 
The values of F(ymc) and ymcc are accepted; this is the P(EC)2 method. It is perhaps 
more common to accept F(ymc) and ymc (PECE), however this procedure costs 
exactly the same-two function evaluations per step-and is in some respects de- 
sirable. The method of proof we give shows the PECE mode has the same order of 
convergence as iterating to completion but not that they have the same asymptotic 
behavior. Indeed, this is probably not true in general. The method does show 
P(EC)2 and other procedures with more function evaluations to have the same 
asymptotic behavior. For this reason we give details for the P(EC)2 mode although 
PECE is the more stable. 

We define yo = yoc = yocc which is consistent with our starting procedure. We 
shall use a predictor of the form 
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(2) ymP = Mym``1 + hNF (yc -l) + py',r + hqf(yc-r) 

Using ymP we form a corrected value ymc by 

(3) YmC = hBF(ymP) + eync' + hdf(ync) 

and a second corrected value 

(4) YmCc = hBF(ymC) + eync' + hdf(y c) 
It is quite easy to show ymcc = um + O(hk) so that the predictor-corrector pro- 

cedure is convergent at the same rate as iterating to completion. However, to show 
the procedures have the same asymptotic behavior we have to show ymCc = ym + 
0(hk+l) which implies the error terms of O(hk) are identical. 

If we define IIy-1 - y~cll = IIy-i - y-iII = 0, then (1), (3), (4) imply 

(5) I]Ym-ym~mCI <hLllBll IIYm-Ym~ll + I]Ym-l _ ymc 1ll + h~lldll jl~m-1-y- I+ jIy 

(6) IlYm - YmCc < hLfIBly IJ -ymcl + |Yin-i- ymifl + hLIndfl 'IymI- 

We suppose that for any smooth function u(x) 

Ur = Mum-, + hNF(umi1) + PUn-r + hqf(Un-r) + dm 

where dm = O(hk). Taking u(x) to be the solution of the differential equation and 
using ym = um + O(hk) and (2), we find 

(7) ||Ym-Y P|j < IIMj1 ||Ym-1Y- Yc 11 + IIPII I|Ym-2Y-Yc211 

+ hL11NI IlYm-1 - y~-ijl + hLIjqII IlYm-2 - Y-211 + yhhk 

for suitable constant 7y ? 0. 
For constants a > 1, f > LfIBjj'y, j = LIjdII + LIjBlJ we define the sequence 

em by e-1 = 0, 

em = em[l + ha] + f3hk+2 , m = O. 1 

We claim that for all sufficiently small h and all m = O1, * ... 

(8) |lym - y | -< ?aem-1 + Ohk+l , IYm - ymCCfl <em. 

This is obviously true for m = 0. Suppose it is true for all indices through m - 1. 

Noting that em is increasing in m, the induction assumption and (7) imply there are 

constants C1, C2 such that for all sufficiently small h 

Ilym - ym I| < Ciem1 + ,yhk + C2hk+2 

Using this and (5) we find there are constants C3, C4 such that 

|lym - ymcII < emi-(l + hC3) + LfIBILIyhk+l + C4hk+2 < aemi, + Ohk+l1 

the last inequality holding for all sufficiently small h because of the conditions on 

a, O. This result, the induction assumption, and (6) yield 

IlYm - ymccfl < emi-[l + ha(LIfBfl + LfldlI)] + 3(LIfBfl + LfldII)hk+2 = em. 

Thus our claim is true by induction. 

A standard argument [10, p. 18] shows that for mrh ? b - a, 

em < ? hk+leaS(b-a) (1/a + Sh) 
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Together with (8) this says ymCc = ym + O(hk+1) uniformly on [a, b] which is the de- 
sired conclusion. 

3.2. Stability. In contrast to the situation of subsection 2.2, stability for finite h 
appears to be the most serious limitation of block implicit methods when used as a 
predictor-corrector combination of the type suggested. We shall study the Clip- 
pinger-Dimsdale formula and obtain its stability boundary for a number of pro- 
cedures. By way of comparison we recall that the stability boundary is 

2.785 for the fourth-order Runge-Kutta, 
1.285 Adams-Moulton, Adams-Bashforth PECE, 
1.000 Stabilized Milne. 

We only study predictors which use y and y' values as in the analysis of the. 
previous section. Thus as in (2) the form is exemplified by 

p 
Yn+1 = C21yn-2 + C22yn-1 + C23yn 

+ h(d2lynL2 + d22ynI. + d23Yn'). 

Predictors of orders four, five and six which minimize 

Cik and ECik+ E dik 

were examined. These quantities affect the propagation of uncorrelated noise and 
it was felt their minimization would lead to reasonable formulas. Formulas of orders, 
six and five have no and one free parameter respectively and yield unsatisfactory 
formulas. The two fourth-order formulas differ little; the simpler set is 

1 h 
Y?+1 = - (Yn-2 + Yn-1 + Yn) + - (3yn-2 - 4y'-1 + 13yn'), 

(9) 
I Ih 

Yn+2 = 3 (Yn-2 + yin- + Yn) + 12 (29Yn-2 - 72yt-', + 79Yn'). 

It is a little simpler to determine the stability boundary of PE(CE)k modes than 
for P(EC)2 so we shall just give details for them. It is convenient now to define; 
the vectors for n = mr, 

YO= (YO, Yl, Y2 )T 

Ymp = (yncc Ynp~l yP 2)T, 

Ymc = (Ynccy Ync+i Y1 ) )T 

Ymcc = (Yncc Ync+l Yni+2 ) 

Now if we use the matrices 

/0 0 1 \ 0 0 0 \ 

C = C21 C22 C23 D= (d21 d22 d23 

C31 C32 c33 d3l d32 d33 

01 (0 0 0 

P = 1 0 0 Q= 5/12 2/3 - 1/12), 

1 0 0 1/3 4/3 1/3 / 
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then 

YmPl= (C + XD)Ym cc 

Ye~l= (P + XQ)YP~1, 
Yccl= (P + XQ)Ym,1 = (P + XQ)2(C + XD)Ymcc. 

In general for PE(CE)k 

y(k)= (p + XQ)k(C + XD)Ym(k) 

which implies Ym(k) = T my0(k) where T = (P + XQ)k(C + XD). From this repre- 
sentation we see that the stability boundary is the largest number H such that if 
X E (-H, 0), then all the eigenvalues of T have modulus less than one. For the 
predictors (9) we have found for PE(CE)k 

k 1 2 3 4 
H 0.439 0.694 0.934 1.293 

A similar analysis shows H = 0.410 for the P(EC)2 mode. 

4. Numerical Results. In this section we compare numerically our example and 
several well-known and widely used fourth-order schemes. The methods are: 

RK: Runge-Kutta scheme with classical parameters. 
ABM: Adams-Bashforth, Adams-Moulton PECE scheme. 

SM: Stabilized Milne method as described in Stetter's paper [11]. 
BOS: Predictor-corrector mode of the block one-step method using (3.9). 

BOSLS: Block one-step method (as applied to linear problems) with the cor- 
rector pair of equations being solved exactly using a Gaussian elimina- 
tion routine. 

Because of the stability limitation of the particular BOS scheme above and be- 
cause more promising approaches for predictors are currently being investigated, 
only a limited comparison of the above methods was undertaken. The sample 
problem set consisted of ten linear and ten nonlinear first-order differential equa- 
tions. 

The problem of Table 1 is 

y' (x) = -y(x), y(0) = 1, 0 ? x < 20, h = 0.25. 

The problem of Table 2 is 

y'(x) = -y2(x), y(0) =, 0 x < 20 h = 2-5. 

The results for both linear and nonlinear problems were generally consistent and 
indicated that BOS and BOSLS (where applicable) are competitive with the other 
methods. For h near the stability boundary, BOS naturally does not yield acceptable 
answers. However, for h small enough that the computed solution is correct to 
nearly machine accuracy, BOS generally produced the smallest relative errors. For 
intermediate values of h, it was frequently the case that BOS produced more 
accurate results than RK and ABM but less accurate than SM, with BOS and 
BOSLS being essentially equivalent. For small h, BOSLS was less accurate than 
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BOS, a factor attributed to the inaccuracies of the represented linear system as 
h -* 0 and the resulting numerical inversion. On the other hand, BOSLS is stable 
for all h and, in fact, yields a solution correct to machine accuracy for the problem 
Y = 100(y - x), y(0) = 0.1 with h = 1/2. None of the other methods were capable 
of computing a stable solution for any reasonable h. The two examples of Tables 
1, 2 are representative of the results from the whole sample problem set. 

The starting procedure supplies each routine with the necessary number of 
exact values prior to the initial starting point. In this way, the first computed 
solution value occurs at xo + h for all the methods. Also, except for the starting 
procedure, the comparisons are based on an equal number of function evaluations 
for the fixed interval of integration. Thus the stepsize for the RK method is 2h. The 
tabulated values are the relative discretization errors (yn - u(xn))/u(xn). All 
computations were performed on a CDC 3600. 

TABLE 1. Linear Problem. Relative Error X 10-3 

X BOSLS BOS SM RK ABM 

2 0.18 - 2.4 0.26 1.6 - .70 
4 0.35 - 7.5 0.52 3.2 -1.4 
6 0.53 -13 0.77 4.8 -2.1 
8 0.71 -20 1.0 6.4 -2.8 

10 0.88 -26 1.3 7.9 -3.5 
12 1.1 -33 1.5 9.5 -4.2 
14 1.2 -39 1.8 11 -4.9 
16 1.4 -45 2.0 13 -5.6 
18 1.6 -52 2.3 14 -6.3 
20 1.8 -58 2.5 16 -7.0 

TABLE 2. Nonlinear Problem. Relative Error X 10-8 

X BOS SM RK ABM 

2 -6.7 7.2 6.8 -47 
4 -4.0 4.4 4.2 -29 
6 -2.8 3.2 3.0 -21 
8 -2.2 2.5 2.3 -16 

10 -1.8 2.0 1.9 -13 
12 -1.5 1.7 1.6 -11 
14 -1.3 1.5 1.4 - 9.7 
16 -1.2 1.3 1.2 - 8.5 
18 -1.0 1.2 1.1 - 7.6 
20 -0.94 1.1 0.99 - 6.9 

5. Remarks. It is a trivial matter to alter our analysis so as to permit unequal 
spacing within a block. As long as the mesh-points are reasonably close to even 
spacing we may rightfully claim r new computed values per block. This remark is, 
important if one considers formulas with r = 3 for only convergence of order four 
may be obtained with evenly spaced points. By spacing so that the quadrature 
formula for Yn+3 is the appropriate Lobatto formula, a fifth-order procedure is 
obtained with a spacing quite acceptably even. 
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The stability of the predictor-corrector methods appears to be their most serious 
disadvantage. There are other ways of organizing the computations with the pre- 
dictors which seem to improve the stability a great deal. We have generated a 
suitable procedure with the correctors (2.5) which at a cost of two function evalua- 
tions per step has an experimentally determined stability boundary greater than 1. 
We are currently investigating this promising approach. 

Portions of this paper have been much improved because of constructive 
criticism by an anonymous referee. 
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